When the product of two (or more) numbers is zero, then at least one of them must be zero, i.e., if \(ab = 0 \) then \(a = 0 \) or \(b = 0 \).

EXERCISE

1. Solve for the unknown using the Null Factor law:
 - \(a \): \(3x = 0 \)
 - \(b \): \(5y = 0 \)
 - \(c \): \(a \times 8 = 0 \)
 - \(d \): \(b \times -2 = 0 \)
 - \(e \): \(-7y = 0 \)
 - \(f \): \(ab = 0 \)
 - \(g \): \(2xy = 0 \)
 - \(h \): \(abc = 0 \)
 - \(i \): \(x^2 = 0 \)
 - \(j \): \(a^2 = 0 \)
 - \(k \): \(pqr = 0 \)
 - \(l \): \(a^2b = 0 \)

2. Solve for \(x \) using the Null Factor law:
 - \(a \): \(x(x - 5) = 0 \)
 - \(b \): \(2x(x + 3) = 0 \)
 - \(c \): \((x + 1)(x - 3) = 0 \)
 - \(d \): \(3x(7 - x) = 0 \)
 - \(e \): \(-2x(x + 1) = 0 \)
 - \(f \): \(4(x + 6)(2x - 3) = 0 \)
 - \(g \): \(x^2 = 0 \)
 - \(h \): \(4(5 - x)^2 = 0 \)
 - \(i \): \(-3(3x - 1)^2 = 0 \)

To use the Null Factor law when solving equations, we must have one side of the equation equal to zero.

STEPS FOR SOLVING QUADRATIC EQUATIONS

Step 1: If necessary rearrange the equation with one side being zero.

Step 2: Fully factorise the other side (usually the LHS).

Step 3: Use the Null Factor law.

Step 4: Solve the resulting linear equations.

Step 5: Check at least one of your solutions.

3. Solve for \(x \):
 - \(a \): \(x^2 - 7x = 0 \)
 - \(b \): \(x^2 - 5x = 0 \)
 - \(c \): \(x^2 = 8x \)
 - \(d \): \(x^2 = 4x \)
 - \(e \): \(3x^2 + 6x = 0 \)
 - \(f \): \(2x^2 + 5x = 0 \)
 - \(g \): \(4x^2 - 3x = 0 \)
 - \(h \): \(4x^2 = 5x \)
 - \(i \): \(3x^2 = 9x \)

4. Solve for \(x \):
 - \(a \): \(x^2 - 1 = 0 \)
 - \(b \): \(x^2 - 9 = 0 \)
 - \(c \): \((x - 5)^2 = 0 \)
 - \(d \): \((x + 2)^2 = 0 \)
 - \(e \): \(x^2 + 3x + 2 = 0 \)
 - \(f \): \(x^2 - 3x + 2 = 0 \)
 - \(g \): \(x^2 + 5x + 6 = 0 \)
 - \(h \): \(x^2 - 5x + 6 = 0 \)
 - \(i \): \(x^2 + 7x + 6 = 0 \)
 - \(j \): \(x^2 + 9x + 14 = 0 \)
 - \(k \): \(x^2 + 11x = -30 \)
 - \(l \): \(x^2 + 2x = 15 \)
 - \(m \): \(x^2 + 4x = 12 \)
 - \(n \): \(x^2 = 11x - 24 \)
 - \(o \): \(x^2 = 14x - 49 \)
5 Solve for x:
 a $x^2 + 9x + 14 = 0$
 b $x^2 + 11x + 30 = 0$
 c $x^2 + 2x = 15$
 d $x^2 + x = 12$
 e $x^2 + 6 = 5x$
 f $x^2 + 4 = 4x$
 g $x^2 = x + 6$
 h $x^2 = 7x + 60$
 i $x^2 = 3x + 70$
 j $10 - 3x = x^2$
 k $x^2 + 12 = 7x$
 l $9x + 36 = x^2$

6 Solve for x:
 a $2x^2 + 2 = 5x$
 b $3x^2 + 8x = 3$
 c $3x^2 + 17x + 20 = 0$
 d $2x^2 + 5x = 3$
 e $2x^2 + 5 = 11x$
 f $2x^2 + 7x + 5 = 0$
 g $3x^2 + 13x + 4 = 0$
 h $5x^2 = 13x + 6$
 i $2x^2 + 17x = 9$
 j $2x^2 + 3x = 5$
 k $3x^2 + 2x = 8$
 l $2x^2 + 9x = 18$

7 Solve for x:
 a $6x^2 + 13x = 5$
 b $6x^2 = x + 2$
 c $6x^2 + 5x + 1 = 0$
 d $21x^2 = 62x + 3$
 e $10x^2 + x = 2$
 f $10x^2 = 7x + 3$

8 Solve for x by first expanding brackets and then equating to zero:
 a $x(x + 5) + 2(x + 6) = 0$
 b $x(1 + x) + x = 3$
 c $(x - 1)(x + 9) = 8x$
 d $3x(x + 2) - 5(x - 3) = 17$
 e $4x(x + 1) = -1$
 f $2x(x - 6) = x - 20$