Here are some words which are frequently used

- **terms**: numbers being added or subtracted
- **product**: the result of a multiplication
- **factors**: numbers which divide exactly into another number
- **quotient**: the result of a division
- **divisor**: the number by which we divide
- **dividend**: the number being divided

MULTIPLES

A multiple of any counting number is obtained by multiplying it by another counting number.

For example, the multiples of 3 are: 3, 6, 9, 12, 15, 18, and these are obtained by multiplying 3 by each of the counting numbers in turn,

i.e., \(3 \times 1 = 3, \ 3 \times 2 = 6, \ 3 \times 3 = 9, \ 3 \times 4 = 12, \ etc. \)

EXERCISE A

1. List all the factors of:
 - a 9
 - b 12
 - c 19
 - d 60
 - e 23
 - f 48
 - g 49
 - h 84

2. List the first five multiples of:
 - a 4
 - b 7
 - c 9
 - d 15

Example 1

- a Find the largest multiple of 9 less than 500.
- b Find the smallest multiple of 11 greater than 1000.

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>(9)</td>
<td>(11)</td>
</tr>
<tr>
<td>(\underline{5080})</td>
<td>(\underline{10040})</td>
</tr>
<tr>
<td>(5)</td>
<td>(9)</td>
</tr>
</tbody>
</table>

with 5 remainder

with 10 remainder

So, the largest multiple is

\(9 \times 55 = 495. \)

So, the smallest multiple is

\(11 \times 91 = 1001. \)

3. a Find the largest multiple of 7 which is less than 1000.
 b Find the smallest multiple of 13 which is greater than 1000.
 c Find the largest multiple of 17 which is less than 2000.
 d Find the smallest multiple of 15 which is greater than 10000.
Divisibility

One number is divisible by another if, when we divide, the answer is a whole number.

The following divisibility tests should be kept in mind when looking for prime factors:

<table>
<thead>
<tr>
<th>A natural number is divisible by</th>
<th>2</th>
<th>if the last digit is even or 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>if the sum of the digits is divisible by 3</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>if the last two digits are divisible by 4</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>if the last digit is 0 or 5</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>if the number is even and divisible by 3.</td>
</tr>
</tbody>
</table>

EXERCISE B

1. Which of the following are divisible by:

<table>
<thead>
<tr>
<th>i</th>
<th>ii</th>
<th>iii</th>
<th>iv</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1002</td>
<td>b</td>
<td>12345</td>
<td>c</td>
</tr>
<tr>
<td>f</td>
<td>6039</td>
<td>g</td>
<td>91839</td>
<td>h</td>
</tr>
</tbody>
</table>

Example 4

Find □ if 53□ is divisible by: a 2 b 5 c 4 d 3

- a To be divisible by 2, □ must be even or 0. \(\therefore □ = 0, 2, 4, 6, 8\)
- b To be divisible by 5, □ must be 0 or 5. \(\therefore □ = 0\) or 5
- c To be divisible by 4, ‘3□’ must be divisible by 4.
 \(\therefore □ = 2\) or 6 \(\{\text{as 32 and 36 are divisible by 4}\}\)
- d To be divisible by 3, \(5 + 3 + □\) must be divisible by 3.
 \(\therefore □ = 1, 4\) or 7 \(\{\text{as the number must be 9, 12 or 15}\}\)

2. Find □ if the following are divisible by 2:

 a 43□ b 592□ c 3□6 d □13

3. Find □ if the following are divisible by 3:

 a 31□ b 2□3 c □42 d 32□5

4. Find □ if the following are divisible by 4:

 a 42□ b 3□4 c 514□ d 68□0

5. Find □ if the following are divisible by 5:

 a 39□ b 896□ c 73□5 d 64□2

7. Find the digits X and Y if the number of form ‘X7Y6’ is divisible by 24.

8. Find the largest three digit number divisible by 3 and 4.