In the following questions construct equations from the information given and then solve to find the unknown.

1. When a number \(x \) is added to its square, the total is 12. Find two possible values for \(x \).

2. A number \(x \) is equal to its own square minus 42. Find two possible values for \(x \).

3. If the area of the rectangle below is 10 cm\(^2\), calculate the only possible value for \(x \).

4. If the area of the rectangle below is 52 cm\(^2\), calculate the only possible value for \(x \).

5. A triangle has a base length of \(2x \) cm and a height of \((x - 3) \) cm. If its area is 18 cm\(^2\), calculate its height and base length.

6. A triangle has a base length of \((x - 8) \) cm and a height of \(2x \) cm. If its area is 20 cm\(^2\), calculate its height and base length.

7. A right-angled triangle has a base length of \(x \) cm and a height of \((x - 1) \) cm. If its area is 15 cm\(^2\) calculate the base length and height.

8. A rectangular garden has a square flower bed of side length \(x \) m in one of its corners. The remainder of the garden consists of lawn and has dimensions as shown. If the total area of the lawn is 50 m\(^2\):
 a) form an equation in terms of \(x \),
 b) solve the equation,
 c) calculate the length and width of the whole garden.

Page 1 of 1